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ABSTRACT 

This paper outlines a theory for a diagnostic balance model. A unique manner of partitioning baroclinic vertical 
motions into various forcing mechanisms is proposed as a natural extension of the quasi-geostrophic problem. Forcing 
functions include advection of vorticity and temperature by the nondivergent and the divergent part of the wind. 
Role of various terms of the complete vorticity and the so-called balance equations are included in the analysis. 
Other features of the diagnostic model are air flow over terrain, frictional contributions a t  the lower boundary, sen- 
sible heat transfer from water surfaces, and stable and unstable formulations of latent heat release. Typical magni- 
tudes and physical interpretations of several nongeostrophic mechanisms are illustrated. Two applications of the above 
mentioned diagnostic model appear in this issue, a study of a frontal cyclone development by Krishnamurti and a 
study of a low latitude disturbance by Baumhefner. 

1. INTRODUCTION 
A diagnostic Lalance model can be used to describe the 

three dimensional motion, temperature, pressure, and 
moisture fields consistent with a system of scaled dy- 
namical equations. The diagnostic balance model provides 
a detailed initial state for a primitive equation model 
and may be used for studies of short period evolution of 
weather systems. Adjustment of wind and pressure field 
in a primitive equation model may be studied from such 
an input and from'simpler balanced systems. 

I 

tropical disturbances outside of the intertropical con- 
vergence zone and the hurricane class where the Rossby 
number is still <1 and the expansion theory is hence 
valid. 

In a typical easterly wave, for instance, 

u = 10 m.p.s. 
f=0.5X10-4 set.-' 
L = lo6 m. 
R0=0.2<1. 

In the following we present dynamical equations that 
are valid for a small Rossby number ( R , < ~ )  theory; 
Lorenz [lo] and Phillips [13]  have discussed the essential 

In  the middle latitudes, cyclone scale disturbances belong 
to this class, namely 

If we deal with disturbances closer to the Equator O r  Of 

than 'Oo0 km. Or much larger wind 

weather disturbances we deal with here satisfy the 
criteria of small Rossby number. In this issue of the 
Month& Weather Review we present a detailed study of an 

scale analysis and energetics of this system of equations. speeds, then this analysis would not 'PP'Y. The Of 

however the possible application of a dynamical system 
where Ro>l in low latitudes is questionable. 

The model can be applied with considerable confidence 
to study weather systems of the Tropics that are found 
about 5" lat. away from the Equator and that have not 
reached hurricane strength. There are a large number of 

extratropical storm (Krishnamurti [7]) and a study of a 
nondeveloping easterly wave under an upper cold Low 
(Baumhefner [2]). Our studies also include an inves tiga- 
tion of a developing easterly wave (Krishnamurti [6]). 
The calculations in this latter were carried out during its 
prehurricane stage when the flow fields were characterized 
by R o < l .  Other related studies appear in Krishnamurti 
(81. 
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An examination of large-scale motion, temperature, 
pressure, and moisture distribution is needed for any 
search of instability mechanism that may be important 
in the subsequent developments to large Rossby number 
phenomena. 

The diagnostic balance model is a very powerful tool 
for studying the role of a number of rather complex 
mechanisms that describe the instantaneous state of the 
atmosphere. The formulation of the model for the middle 
latitudes is somewhat different from that in the Tropics 
for at  least two essential reasons: 

i) The nondivergent stream function of the horizontal 
velocity field for middle latitude systems can in general 
be obtained from a solution of a balance equation for a 
prescribed distribution of the geopotential height field. 
An analysis of the geopotential height field is not easily 
possible in the Tropics and a wind field is required to 
obtain a stream function which corresponds to the 
observed relative vorticity distribution. 

ii) Heating functions describing effects of latent heat 
release can be handled rather easily if dynamical ascent of 
absolutely stable air is producing condensation. This is 
generally true of the large-scale precipitation from stable 
nonconvective cloud systems. The heating function can 
in such cases be defined nonzero if 

1) Atmosphere is absolutely stable 
2) Relative humidity is near 100 percent 
3) Air is rising on a large scale. 

These conditions are generally met in the middle latitudes. 
In  the Tropics heating functions have to  be defined for 
convective type of cloud forms. A formal parameteriza- 
tion of the cumulus-scale heating should perhaps be 
carried out in somewhat the same way as it is done for 
studies of tropical storms, e.g. Kuo [9]. In the Tropics a 
heating function may be defined if 

1) Atmosphere is conditionally unstable 
2 )  Net moisture convergence in vert>ical columns >O. 
While we have separated the middle latitudes and the 

Tropics in two broad categories for defining heating 
function, in the real atmosphere there is a large overlap 
generally, and this must be borne in mind in treating 
weather systems. For instance, near the fronts of a middle 
latititude cyclonic disturbance all of the tropical condi- 
tions will generally be satisfied and a heating function in 
such regions should be accordingly defined. The problem 
thus becomes somewhat too complicated. For the present, 
we have made this broad division between the high and 
low latitude disturbances. 

2. THE BALANCE EQUATIONS 
The quasi-static equation of motion with pressure as a 

vertical coordinate may be written in the form (a list of 
symbols appears in table l), 

av 
at aP 
c+ (V.V)V+w -- f V X k=-gQZ+F 

The continuity equation may be written in the form 

(3) 

The first law of thermodynamics is expressed by the 
relation, 

(4) 

where H is the diabatic heating per unit mass of air. 
In the formulation of a diagnostic balance model, 

vorticity and divergence equations are derived from 
equations (1) and (2). From considerations of scale 
analysis, certain terms involving the time derivatives of 
divergence and advection by the divergent part of the 
wind are dropped generally (Lorenz [lo], Phillips [13]). 

By defining, 
V=k X V$-vX, 

where + and x define a stream function and velocity 
potential, we may write the vorticity and the divergence 
equations by the relations: 

The frictional force is retained a t  the 1000-mb. surface, 
and is defined in terms of stresses T ,  and rv. 

.. __ 
T 2 = C D p ~ J U 2 +  V2 (7) 

Tu= c D ~ v J u ~ T V '  (8) 

where U and V are the totaI horizontal wind components 
on a pressure surface and C, is a drag coefficient. The 
nondivergent stream function in the following is obtained 
from equation (6) for a given geopotential (6, for the high 
latitude weather systems. The method of solution is the 
same as that given in Shuman [14], except when the 
equation is hyperbolic over part of the area of interest, 
in which case we have solved the equation 

Q.~V+V~+-~J(U,,V,). (9) 

Comparison of the two stream functions obtained from 
equations (6) and (9) for an example with no hyperbolic 
regions showed very slight differences in the stream func- 
tions. Equation (9) may hence be used to evaluate the 
stream function when there are limited hyperbolic 
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Meaning of symbol 

Fractional area covered by convective 

Coriolisparameter ..................... 
Zonal velocity of total balance wind .... 
Meridional velocity of total balance 

Verticalvelocity ....................... 
Densitvofair .......................... 

clouds 

wind 

~~ 

T. N. Krishnamurti 

u S r a  

0 0 0 0 

0 0 -1 0 
0 1 -1 0 
0 1 -1 0 

1 0 -1 0 
1 -2 2 0 

199 

Distance along zonal direction .......... 
Distance along meridional direction.. .. 
Pressure, vertical coordinate distance.. 
Mean value of Coriolis parameter ....... 

TABLE 1.-List of symbols, units, and typical magnitudes. Note that 
we use the following fundamental units: milIibaF, meters, second?, 
degree6. The table contains the symbol; meaning of symbol; values 
of a, 8, y, 6; and a typical atmospheric magnitude of the quantity 
in those units. The * denotes very wide range of magnitudes. 

0 1 0 0 
0 1 0 0 
1 0 0 0 
0 0 -1  0 

Symbol 

a 

L 
0 

P 
2 
U 
P 
10 

R 
CP 
C. 
PO 
I 
k 
T 

0 

0.  

e 

VJ 
V 

Dry static stability ..................... 2 2 -2 0 
Moist staticstabilitv-.I ................ I -2 2 -2 0 
Gas constant ........................... 
Specific heat of air of constant pressure. 
Specific heat of air at constant volume.. 
Reference pressure- .................... 
Acceleration of gravity _ _ _ _  - -.- _ _  __. -. -. 
Unit vector in the vertical direction .... 
Air temperature ........................ 
Potential tem ature. ................. 
Horizontal ve%ty vector _____. -. . -. _ _ _  
Rotational part of horizontal wind vec- 

Divergent part of horizontal wind vec- 

Northward variation of Coriolisparam- 

Height of constant pressure surfaces 
Geopotential of constant pressure sur- 

Rotational part of the horizontal wind. 
Velocitv Dotential.. ................... 

tor 

tor 

eter 

faces 

- _  
Del operator. .......................... 
Laplacian operator.. ................... 
Jacobian operator. ..................... 
Symbol for RTipO.. .................... 
Forcing functions of w equation.. ...... 
Specific humidity. ..................... 
Saturation soecific hurniditv-- ......... I 
Absolute vorticity ...................... 
Grid distance along z-ax is... ........... 
Grid distance along y-axis .............. 
Frictional force per unit m w  _ _ _ _  _ _ _ _ _ _  
Relative vorticitv.. .................... 
Latent heat- ... -: ...................... 
Components of deformation- .-. __. ___. - 
Heating function.. ..................... 
Sensible heat flux ...................... 
Net moisture convergence-. ............ 
Frictional stress.. ...................... 
Terrain induced vertical motion..-. . -. - 
Map scale factor ........................ 
Latitude- .............................. 

0 2 -2 -1 
0 2 -2 -1 
0 2 -2 -1 
1 0 0 0  
0 1 - 1  0 
0 1 0 0  
0 0 0 1  
0 0 0 1  
0 1 - 1  0 
0 1 - 1  0 

0 1 - 1  0 

0 -1 -1 0 

0 1 0 0  
0 2 - 2  0 

0 2 - 1  0 
0 2 - 1  0 
0 
0 
0 

-1 
-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 

-1 
-2 
-2 

2 
0 
0 
0 
0 
1 
1 
1 
0 
2 
0 
2 
1 

-1 
0 
0 
0 
0 

0 
0 
0 

-2 
-3 

0 
0 

-1 
0 
0 

-2 
-1 
-2 
-1 
-3 
-1 

1 
0 

-1 
0 
0 

0 
0 
0 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Magni- 
tude 

10-2 

1W 
10 
10 

10-2 
101 
101 
I@ 
1W 
10-2 

2000/7 

10-3 

910-3 

103 

!EP 
10 
1 
300 
300 
10 
10 

1 

10-11 

*6wo 
%Xl@ 

1Oe 
106 
10-3 
10-7 
10-7 

10-3 

'0.3 
*l0-18 

10-8 
1W 
2.5X105 
2.5XlW 
*1W 
1W 
108 
lo-' 
10-2 
10-1 
lo+ 
10-3 
10-3 
1.0 
1.0 

regions. The ellipticity condition is frequently expressed 
by the relation 

(10) 

Since V- cfV+) --V2fp, the inequality expressed by relation 
(10) may be written as: V y > - j f 2  which is sometimes 
used as an approximate condition for ellipticity of the 
balance equation. This relation is generally satisfied by the 
solution over most regions except where the magnitude 
of the anticyclonic relative vorticity is large. For the 
low latitude system relative vorticity V2+ is obtained from 
the analyzed wind field (isotach and isogon distribution) 

v2fp+ 3 j 2 -  vj. v+> 0.  

avo a v  
ax ay 

VzJ.=--- 

where 7.7" and Vo are the zonal and meridional components 
of the observed wind. This stream function is then as- 

sumed to be related t b  a geopotential height distribution 
from the balance equation, 

There are several numerical problems that are encountered 
in the actual solution of these boundary value problems; 
we shall discuss these in some detail in the other sections. 

The thermodynamic energy equation (4) may be 
combined with an equation of state, 

RT 
PO 

==- 

and a relation for a static stability parameter, 
~ ~ a e  ae 
P e a P  = @  a=----=- 

t o  obtain the following equation, 

=J(+,e) +=vx.ve+ am+ H R  - . ae 
at CPP (15) = -=- 

The w-equation of a general balance model is obtained 
by combining equations (5), (6), and (15). It is expressed 

by the following three equations for w,  x, and -: a+ 
at 

a+ a -vw.v --w - vy. 
aP aP 

Equations (16), (17), and (18) are solved by numerical 
techniques, and a discussion of these solutions is a major 
part of this paper. There are several problems that are 
encountered in the solution of the equations that are of 
interest : 

a+ i) Proper boundary conditions for w ,  x, and - 
at 
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4. FORCING FUNCTIONS OF THE BALANCE 
w-EQU ATlON 

The quasi-geostrophic w-equation contains two forcing 
functions, while the general balance w-equation, presented 
here, has 12 forcing functions. At first sight it is not quite 
obvious that an analysis should be carried this far, but 
as we shall show the contribution by several of these 
terms is quite large and yields information that is not 
obtainable from a quasi-geostrophic model. 

The forcing functions are: 

ii) Ellipticity of the three equations, validity of bound- 

iii) Finite difference analogs of the three equations 
iv) Formulation of heating terms, sensible and latent 

heat for stable and unstable situations 
v) Formulation of surface friction 
vi) Inclusion of terrain effects 
vii) Interpretation of results. 

ary value techniques 

3. THE DEVELOPMENT PROBLEM 

For a simple quasi-geostrophic theory (adiabatic, 
frictionless flow) the individual change of vorticity is 
given by the convergence of mass 

Differential vorticity advection 
by the nondivergent part of 
the wind 

Laplacian of thermal advection 
by the nondivergent part of 
the wind Vertical motion in a quasi-geostrophic theory is given by 

the w-equation, 
We label this term as a differ- 

en tial deformation effect (ex- 
plained later). 

a ab 
aP =fo v .V~,-V2V.V -* (20) 

The two forcing functions of an w-equation are: i) Dif- 
ferential vorticity advection, and ii) Laplacian of thermal 
advection. 

Given the cp distribution for several map times the 
instantaneous distribution of vertical motions can be 
determined from a solution of the w-equation. If three 
dimensional trajectories are constructed utilizing these 
velocities, then the observed change in vorticity along 
the trajectory may be related to the computed conver- 
gence and we may hence determine the map features 
that contribute to vertical motions and convergence. 
Sutcliff e’s [ 151 and Petterssen’s [ 121 development criteria 
are essentially quasi-geostrophic development formulas 
that pursue this sort of reasoning. 

In a general balance model this problem becomes 
somewhat more complicated. With the t,b and x distri- 
bution of a balance model having been obtained, the 
horizontal velocity components 

a 4. -f - ( lV2X) 
aP 

Differential divergence effects of 
a balance model 

Effects of frictional stresses 

Effects of latent heat 6. -- V2HL 
PP 

R 7. V2Hs 
CPP 

Effects of sensible heat transfer 
from water surfaces to the 
atmosphere 

Differential vertical advection of 
vorticity 

Differential turning of vortex 
tubes ( 3 a 

aP 
9.f-  Vc0.V- 

Differential advection of vortic- 
ity by the divergent part of 
the wind 

a 10. -f - {VX-Vy,} 
aP 

Laplacian of thermal advection 
by the divergent part of the 
wind 

and the p-components for several map times may be 
used to construct three dimensional trajectories (Paegle 
[ 111). Along such trajectories various development terms 
of the vorticity equation may be tabulated and a listing 
of various baroclinic mechanisms producing rising motions 
and convergence can be made. All of this information 
becomes very useful for studying the storm development 
problem. This has been a major motivation for pursuing 

Contribution by the beta term of 
the divergence equation. 

a a %  
apay at 12. - p  - - - 

The complete problem is solved with and without ter- 
rain effects to estimate terrain contribution. It might 
ha.ve been desirable to include the terrain effects as an in- this investigation. _ _  - . - . - _-- - - 
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ternal forcing function. The pressure frame (5, y, p )  is . some- 
what artificial near the lower boundary due to reduction of 
data to sea level, and this boundary condition at  best is 
only a compromise for the real problem of upslope and 
downslope motion of air. An earth frame, where the earth’s 
surface is a coordinate surface, would be more desirable for 
inclusion of terrain boundary condition, but the problem 
becomes many times more complicated when all the terms 
of the balance model are retained. 

The problem, as we have posed it, contains 12 internal 
forcing functions and one external forcing function. 

In all cases the following qualitative rule is found im- 
portant for interpreting vertical motion contribution. If 
a forcing function Ft is greater than zero, then in the 
vicinity of this region its contribution will be rising 
motions. There are exceptions to this rule but generally 
this is true. 

It is thus easy to verify the relation between rising and 
sinking motion and the vorticity and thermal advection 
patterns. Synoptic experience and results of simple quasi- 
geostrophic w-equation solutions have verified the inverse 
relationship between these forcing functions and the sign 
of rising or sinking motion. It must, however, be noted 
that the two terms of the quasi-geostrophic theory do not 
exactly correspond to the first two terms of a balance 
model. The stream function for the former case is the 
geostrophic stream function gzlfo while for the later case 
it is the balance nondivergent stream function. Besides, 
in the quasi-geostrophic theory j is replaced by jo and the 
static stability u is a function of pressure only, while in 
the balance model the contribution from the first two 
terms arise for variable j and u (5, y, p ) .  

A qualitative interpretation of terms 1,2 ,8 ,9 ,  10, 
and 11 can be made in a similar manner. The heating 
terms 6 and 7 will be positive if HL and Hs are positive 
and will in general contribute rising motions. The forms 
of these functions HL and Hs are discussed in a separate 
section. Frictional stresses (term 5 )  will generally con- 
tribute rising motions in regions of cyclonic relative vor- 
ticity and sinking motions in regions of anticyclonic 
relative vorticity. 

The deformation and the divergence terms (3 and 4) do 
not appear in the quasi-geostrophic theory but are large 
(as we shall demonstrate later) and their interpretation 
is somewhat difficult. 

1 

Let 
au, av, 
ax a7J D1= - - - 

and 

(23) 

(24) 

define the two components of the deformation field. Then 
we can show that 

I n  the vicinity of intensifying frontal zones the magnitude 
of deformation generally increases and the contribution 
by the term 

a a  
at ap -2 - - J(U,,V,) 

will be expected to be large. Much further analysis of this 
term is needed. 

The divergence term strongly modifies the vertical 
motion distribution produced by the leading two terms 
in regions where p is large. This is easy to see from the 
form of the forcing function, 

Let p>O in a region of strong sinking motion, a t  low 
levels [V2x<0, and at  upper levels pVzx>O; hence 

and will contribute rising motion and oppose the two 
leading terms. The converse holds in regions of strong 
rising motions. 

The fl  term (term 12) is the least important of all the 
terms listed above. 

We have not included any radiative effects in the 
analysis presented here; the assumption has been that 
measures of the instantaneous tendencies of atmospheric 
variables for synoptic scale motions can be made without 
invoking these effects. This may prove to be wrong. We 
shall next discuss some of the more detailed aspects of 
heating, friction, and terrain effects in the model. 

5. THE HEATING FUNCTION OF THE w-EQUATION 

In  the w-equation the forcing function of heating terms 
is written in the form, 

R 
G P P  

FH=- - v2H 

where H is defined through the first law of thermody- 
namics as the rate of heating per unit mass of air 

Td8 e , - - - =  H .  e dt (27) 

In  our analysis we have restricted H to contain the 
effects of sensible heat transfer from the water surfaces 
H,, and the effects of release of latent heat HL in the free 
atmosphere, thus H=Hs+HL. 

SENSIBLE HEAT 

Transfer of sensible heat from ocean surface is very 
important in examples of strong polar outbreaks of cold 
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air over warm oceans. We have included a heat flux 
equation defined by the empirical relation, 

Fs= C( Tw - T,) C. (28) 

Jacobs 151 used a value C=4.7X10-3, when the units of 
the various quantities are 

F,: cal./cm2./min. 

v: m./sec. 

Tw- T,: "C. 

The rate of heating Hs is measured as a convergence of 
flux, i.e. 

(29) 

We have assumed Fs=O above the 900-mb. surface in our 
studies; thus the forcing function for the w-equation a t  
the 900-mb. surface has the form, 

R Fs( 1000) 
CPP AP 

- Rg v2Fs(1000). 

F's= -- gv2 

CPP AP 

The forcing function has dimension s ~ c . - ~  mb.-'; thus Fs 
should have the dimension mb. m. set.-' Hence we may 
write, 

Fs=32.9X10-3V(Tw-TT,) mb. m. set.-' (31) 
and 

F~s=4.5953X 1O-'v2V( Tw-T,) in units of s ~ c . - ~  mb.-' (32) 

A crude measure of the vertical velocity near the 1000-mb. 
surface can be made by writing, 

us= - 4'5953x10-7 V(T,-TJ in units of mb./sec. 
U 

(33) 

If we assume typical values of the wind speed (V=10 
m.p.s.), sea-air temp. difference (Tw- T,=l"C.) and 
static stability (u=0.02 m.2 seq.-2 mb.-2) then we obtain, 

us= -2.3X10-4 mb./sec. 

which is a rising motion of about 0.3 cm./sec. The corre- 
sponding dws/dp and rate of production of vorticity a t  the 
sea level wil l  thus be a small quantity. In  strong polar 
outbreaks V can be as large as 25 m.p.s. and (Tw-T,) 
as large as 10°C.) and u may be quite variable, corre- 
sponding contribution to vertical motions near the 1000- 
mb. surface may well exceed 1 cm./sec. In  our studies 
the forcing function for the sensible heat is given by the 
expression, 

FHS=-4.5953XlO-' V2V(Tw- Ta). (34) 

In  the nonlinear balance model static stability is permitted 
to  vary in the x, y, p space; thus a realistic measure of 
the effect of sensible heat is possible. It must however be 
noted that the empirical coefficients of the Jacobs transfer 
formula are not very reliable and such calculations need 
considerable refinement. 

LATENT HEAT 

The following static stability parameters are relevant 
to our studies. 

~ ~ a e  
PO aP 

u=-- - (dry) 

and 
ue=-- ~ ~ a e ,  - (moist) 

Pee a~ 

(35) 

where ee is the equivalent potential temperature defined 
by the relation, 

ee=e exp (L&,T). (37) 

The relation between 
relation, 

and u is given by the approximate 

Since i3qs/ap is large in the lower latitudes and in the 
lower troposphere below 700 mb. generally, ue can be neg- 
ative or positive depending on the magnitude of the 
second term in equation (38). According to parcel ascent 
considerations we define stability by the inequalities: 

i) u > 0 Absolutely stable 

ii) u > 0 Conditionally unstable 

iii) u < 0 Absolutely unstable 

n e  > 0 

ue < 0 

me < 0. 
The dry static stability is regarded as a function u ( p )  in 
quasi-geostrophic models. In the nonlinear balanced 
model static stability is permitted to vary in the three 
dimensions. 

In  our studies of synoptic scale motions we do not have 
to deal with absolutely unstable regions, but inequalities 
i) and ii) do appear. Middle latitude temperature dis- 
tributions are characterized by relation i), and tropical 
flow below 700 mb. satisfies the relation ii) generally. 
In  summer large areas of the lower troposphere as far 
north as 40' lat. can be conditionally unstable, and 
in wintertime during periods of strong polar outbreaks 
tropical latitudes may be absolutely stable on the synoptic 
scale. 

For the absolutely stable case we define a heating 
function HL by the relation, 

(39) 

provided the air is nearly saturated, rising, and ue>O- 
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Since the effective static stability is positive, the o-equa- 
tion remains elliptic. For the conditionally unstable 
case we evaluate a heating function by parameterizing 
the subgrid scale heating as a function of the net con- 
vergence of moisture on the synoptic scale, essentially 
along the lines of Charney and Eliassen [3], or Kuo [9]. 

I gives a measure of net convergence of moisture in 
vertical columns extending from the top of the friction 
layer (subscript B) to the top of the atmosphere (sub- 
script T) . 

The corresponding heating function HL may be written 
as, 

where A is an arbitrary coefficient, and measures the 
fraction of I that will go into the formation of convective 
elements. A direct calculation of this coefficient can be 
made in a manner shown by Kuo [9], as we show elsewhere 
(Krishnamurti [SI). The corresponding forcing function is 
given by the expression, 

In KUO'S formulation His expressed by the relation, 

C H=2 a(Ts-T), At 

where T,, At, and a are defined in table 1. 
Hence we may write: 

Forcing 

A crude measure of large-scale vertical velocity arising 
from the parameterization of cumulus scale motion may 
be obtained by equating, 

v2aw = - - R Vza( Ts - T) 
PA t 

or 
a=-- a(T,-T). 

pAta 

Typical magnitudes are: 
2000 R = 7  m.2 sec.-2 deg.-' 

p=500 mb. 
At ~ 7 2 0 0  sec. 
a=0.02 m.2 sec.-2 mb.-2 
a =0.05 

T,-TT=I". 
Hence 

o = -2X mb./sec. 

203 1 
or 

WzO.25 cm./sec. rising motion. 

The corresponding mid-tropospheric vertical velocity 
is very small. Formal solutions of u-equations (without the 
approximations) do indeed yield vertical motion of this 
order or somewhat smaller in most of the tropical situa- 
tions we have examined. 

6. SURFACE FRICTION 

The contribution from a frictional stress a t  the 1000-mb. 
surface, equations (7) and (S), is expressed by the following 
forcing function of the o-equation: 

ax T 

The quantity in the brackets is evaluated from the diver- 
gent and the nondivergent component of the wind and 
temperature at  the 1000-mb. surface. The manner by 
which the divergent part of the wind is evaluated in suc- 
cessive approximation procedure is discussed in another 
section. Since the choice of the value of the drag coefficient 
is very important in equation (44), it  is somewhat un- 
fortunate that a value based on earlier studies is the best 
that can be done a t  this stage. This is not very critical for 
middle latitude storms where, as we shall see, frictional 
vertical motion in cyclonic disturbances is around 1-2 
cm./sec. a t  the lower levels and damps very rapidly with 
height. This vertical motion is generally overpowered by 
the vertical motions induced by the baroclinic dynamics 
and latent heat. This effect however becomes very impor- 
tant in the Tropics because low level wind speeds still are 
about the same order (10 m.p.s.), density of air is still 
about the same, and for a drag coefficient of 2.5X10-3 
units, vertical velocities produced by frictional stresses 
are of the same order or larger than those produced by the 
weak baroclinic dynamics of the tropical weather systems. 

7. TERRAIN (UPSLOPE AND DOWNSLOPE) VERTICAL 
MOTIONS 

Terrain effect is introduced at  the 1000-mb. surface as a 
lower boundary condition : 

1000 
R T  q = - g  - [J(l),h)-vx.vhl (45) 

where T, l), and x are the values a t  the 1000-mb. surface 
and h is a smoothed terrain height obtained from a study 
of Berkofsky and Bertoni [l]. The ut was used as a lower 
boundary condition in our studies a t  the 1000-mb. surface 
during the relaxation of the o-equation. This lower bound- 
ary effect varies each time a new value of x is estimated, 
the second term is generally much smaller than the first, 
and a numerical scheme exhibits a rapid convergence. (A 
discussion of the manner in which I), W ,  x, and al)/at are 
evaluated is given below.) 
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8. THE CONCEPT OF PARTITIONING OF VARIOUS 
EFFECTS IN DIAGNOSTIC BALANCED MODELS 

Consider the system of partial differential equations, 

aw 
v2x-G (47) 

M n ( w ,  X ,  $1 (48) 

where A(+), B(+) are the leading forcing functions of the 
problem and $(s, y, p )  is prescribed. L1, Lz, L n j  MI, 
M2, . . ., M ,  are operators defining various terms of a 
general balance problem. 

The corresponding quasi-geostrophic problem is defined 
by a single equation 

(49) 

For homogeneous boundary conditions, 

o=O at z=xl, x2 

Y=Yl, Y2 

and p=pl, PZ, 

we may write the quasi-geostrophic problem into the 
following two equations: 

(50) 

(51) 

wA + wB=w. (52) 

a2wn 

aZw, 

V2dP)w”+fi ,,,=A($) 

vZdp>we+fi w=BW 
and 

where 

A partitioning of vertical motion is thus possible for a 
quasi-geostrophic problem; wA is a contribution to the 
vertical motion from the forcing function A($)  which 
may be the differential vorticity advection effects and 

the contribution by the thermal effects. Suoh a parti- 
tioning cannot in general be done using inhomogeneous 
boundary conditions (like terrain contributions) because 
they will enter into both wA and wB and the relation 
w=wA + wB will not hold. A problem of inhomogeneous 
boundary condition can however be transformed into a 
problem with homogeneous boundary condition by re- 
defining a dependent variable o* as a function of w and 
the boundary effects. This is somewhat simple for the 

quasi-geostrophic case but becomes very complicated 
when we deal with the general balance model. Hence the 
partitioning that we shall discuss deals with the problem 
of homogeneous boundary conditions. 

For the general balance problem there are at least two 
interesting ways of partitioning vertical motion distribu- 
tion, which yield convergent solutions for w, x, and 

PROBLEM 1 

Let Li=Lz= . . . =L,=O, solve 

a+lat. 

(53) 

and obtain wl, a first guess solution. This fist guess 
should in general give the principal results, as is the case 
for the small Rossby number theory. 

Next we write, 

and 
‘ v 2(3 - =M1(wl1 XI, $)+ . . . 

Solutions for x1 and (a$/at)l are then’Gvaluated for the 
homogenous boundary conditions, and w2, x2, (a$/at)2, 
. .  . , wn, xn, (aulat) are then successively evaluated 
by retaining all the terms on the right side. Numerical 
convergence is defined by a set of small numbers E ~ ,  E ~ ,  

and E, such that finite difference analogs of equations 
(46), (47), and (48) are satisfied to this degree of tolerance 
error. This is a numerical procedure that has been found 
to converge in a large number of examples where a 
distribution of $(x, y, p )  is assumed given. 

The preceding discussion tacitly assumes that the 
equations for w, x, and a$/& are always elliptic. The 
w-equation can become hyperbolic over portions of the 
region of interest for a variety of reasons. The principal 
problem in this regard, as mentioned earlier, arises from 
the heating functions. This problem .can also arise in 
various other terms of the w-equation, such as terms 4 
and 9 of the master list of forcing functions. This is 
found to be true only when small mesh size of the order 
of 100 km. or less is considered. For larger scale flows it 
is adequate if the heating function and the effective 
static stability are properly retained. ’ 

With a convergent solution for w,  ‘x, and a$/at having 
been obtained, the partitioning of the vertical velocity 
may be carried out in the following manner: 

v2uwe+f2 (57) 
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where and wB determine the contributions from the 
two principal forcing functions and w,  are the contributions 
from n other terms. This partitioning has the feature that 

which is the total vertical velocity, and it yields consider- 
able information regarding baroclinic processes that are 
part of the complex atmospheric phenomena. The 
operator on the left hand side contains the same terms 
as in the quasi-geostrophic theory; hence this manner 
of partitioning may be considered a natural extension 
of the quasi-geostrophic problem. 

PROBLEM P 
Another mechanistic view of the partitioning problem 

is as follows. We write three equations in the form, 

aw V%=- 
aP 

(61 1 
In this formulation nonlinear terms like the twisting 
term, advections by the divergent part of the wind, etc. 
appear on the left hand side of the w-equation. Their 
nature is similar to that of complex differential operators, 
except that not all of these operators contain w explicitly. 
The pertinent question that one might ask with this 
formulation is what individual total contribution to o 
arise from A($) and B($) .respectively. There is no simple 
iterative scheme for solving this problem when the oper- 
ator L, appears o n  the left hand side, though the correct 
answer to  the question raised here can be obtained by the 
following procedure. ' 

Solve the system' of equations 

by dropping B($))  ,by pursuing exactly the same pro- 
cedure as in problem 1 outlined earlier. Let the final 
values of w be o(A+). . 

Next a solution of the system of equations, 

is obtained. Let the final values be w=w(B+) .  Then w= 
w(Al) + w(Bl) will give the unique total vertical velocity 
provided there are no quadratic or higher order non- 
linearities in L, and Mn; in our problem this would a t  
least require a slight reformulation of the friction terms. 

In simpler terminology we have in this second problem, 
modified the contribution to  the rising motion by the 
differential vorticity advection and the thermal advection 
by building up the complex operators on the left hand 
side. This partitioning may in some ways be more realistic 
because now we have the same form of the two forcing 
functions as in the quasi-geostrophic problem on the right 
hand side. It is however somewhat hard to perceive 
physically why, for instance, frictional stresses or latent 
heat should modify instantaneous vertical motions pro- 
duced by differential vorticity advection, and there are 
a number of such other questions that are hard to  answer. 
I have preferred to  determine the partitioning according 
to problem 1 discussed above because the individual 
contributions to the vertical motions by a number of 
forcing functions, in addition to the two (of the quasi- 
geostrophic theory) on the right hand side, are determined 
in a unique manner. The information gained by this 
procedure does yield considerable insight into the role of 
the individual mechanisms. 

It might be asked why not portray fields of the forcing 
functions Fi rather than the partitioned vertical motion? 
The forcing functions by themselves are very cellular. 
The o-field on the other hand is better defined. This is 
analogous, for instance, to a relation between v2 $ and $. 
The former (vorticity) is more cellular while the $ field 
may exhibit long waves. The forcing functions are pro- 
portional to v2ao. 

9. COMPUTATIONAL DETAILS 
GRID POINTS 

The five level model has a vertical staggering of vari- 
ables. V,  #, x, 4, z,  a$Jat, and awJdp  appear a t  the 1000-, 
800-, 600-, 400-, and 200-mb. surfaces. w, T,  0, p, ps and 
the forcing functions of the w-equation appear at  the 
goo-, 700-, 500-, and 300-mb. surfaces. In the horizontal, 
along the zonal direction there are 33 points of which the 
first 27 contain real initial data from analyzed weather 
maps and the last six provide a cyclic continuity such that 
points along 1 and 33 have identical values for dependent 
variables. Points 28, 29, 30, 31, and 32 are interpolated 
through use of information at  points 1, 2, 26, and 27. In 
the meridional direction there are 15 points; points 1 and 
15 are zonal walls a t  two latitude circles, where boundary 
conditions are specified. There is no staggering of variables 

293-255 0 - 68 - 2 
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in the horizontal. Each dependent variable is thus de- 
scribed over either 2,475 or 1,980 grid points. 

BOUNDARY CONDITIONS 

$, a$/at, and x are obtained from solutions of two 
dimensional Poisson type equations. Boundary conditions 
are applied at  the meridional limits y=yl and y=yz. 
These equations are independently solved for each vertical 
level. J.=gz/f is assumed a t  yl and yz if the balance 
equation is solved for observed geopotential distribution. 
If the observed wind field is used then the procedure is the 
following. A pseudo velocity potential x is first obtained 
by solving, 

x is assumed zero a t  yl and yz, uo and vo are the com- 
ponents of the observed wind. Net outflow from the 
domain 

is evaluated a t  y ,  and yz. This is used to prescribe a 
boundary condition on $ by letting, 

and the relation 

prescribes values a t  the boundaries y=yI and y2. This 
assures no net outflow from the boundaries. This pseudo 
field of x is discarded in the interior because of the un- 
reliability of its divergence field (Hawkins and Rosenthal 

For the solutions of a+/& and x of the balance model we 
assume aJ./at=x=O a t  y=yl and y z ,  vertical motion w is 
assumed=O a t  p=100 mb. and = O  or - g p  (VOVh) a t  
p=1000 mb. 

RELAXATION PROCEDURE 

[41). 

The equations of the form 

are assumed to be elliptic here. Let the finite difference 
analog of this equation be written by the equation, 

Residue=WQfR DZQ 7 - T  
DP 

where V2 PQ and D2Q/Dp2 are the finite difference analogs 
of V P Q  and d2Q/dp2 respectively. In order to use the 
same general form of the Liebmann forward extrapolation 
technique, equation (71) may be rewritten in the form, 

The normalizing factor is the inverse of the coefficient 
of Q where ( 1 ~ ~ 1 )  is the magnitude of the finite difference 

del square operator. It is a function of grid lengths and 
the map projection scale factors. 

In the iterative procedure of the Liebmann relaxation, 
during each scan Q is modified by the relation 

Q=Q+a.Normalized Residue (73) 

where CY is the over-relaxation coefficient. 
This procedure converges very rapidly provided a trial 

search is made to determine the optimum magnitude of a. 
No textbook rules determine the values of CY in a general 
problem. (IL is found to vary for different grid distances, 
static stabilities, and ranges of Coriolis parameters. We 
have used 

$+a = 0.3 1 

w+a= 0.37 

X+a=0.47 

*+a= 0.47 at 

for the middle latitude winter storm investigations. In 
the Tropics values differ somewhat on the lower side. 

MAP SCALE FACTORS 

A map scale factor, M ,  appropriate for either a mercator 
or a Lambert conformal equation, is used in the tangent 
plane equations and the finite difference analogs. 

TRUNCATION ERROR 

Truncation errors of forcing functions of the various 
differential equations are different, but in each equation 
all the terms have the same maximum order of truncation 
error. For example, in the w-equation the forcing function 
aJ(J/, {.lap for prescribed $ and la, has an error of the 
order of AxAyAp. 

Note also that 

also has the same order of error for prescribed u+, v+, and 
&+/at, &+/at. u+ and v+ are evaluated from the stream 
function 4, and au+/at and av+/at are evaluated from the 
solution for a$/&. 

10. SOME CONCLUDING REMARKS 
The preceding outline of a general balance model is 

used for diagnostic studies of several weather systems in 
high and low latitudes. See Krishnamurti [6] .  In  this 
issue of the Monthly Weather Rewiew two applications 
are presented, one in middle latitudes (Krishnamurti [71) 
and one in low latitudes (Baumhefner [2]). 

Further studies of three dimensional motion field in 
the vicinity of the Equator where the typical Rossby 



number is of the order of unity can be carried out by 
using the information obtained from such a balance model 
to define the initial state for a primitive equation pre- 
diction model. Short range prediction yields useful in- 
formation for R,>1. We will present the results of such 
experiments in the near future. 

The formulation of heating, friction, and terrain effects 
requires much further work; the present approach is very 
simple. The application we present here utilizes a hori- 
zontal mesh size of the order of 200 km.; small-scale 
processes in the vertical may be parameterized as indi- 
cated; there are several smaller scale processes in the 
horizontal, especially in middle latitudes, that are neither 
resolved by this mesh nor are parameterized in this study. 
Examples of such processes are usually found in the vicin- 
ity of intense jet streams where on a smaller scale maxi- 
mum values of various terms of the dynamical equations 
may be present. Parameterization of such processes will 
be needed for improvement of short range synoptic scale 
forecasts. 
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